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ABSTRACT

This work considers the effect of roughness and waviness
on interfacial pressure distributions and interfacial contact
resistance. It is shown that for moderate roughness the contour
area could be substantially different from the contour area
calculated using the Hertzian theory. The model for pressure
calculation assumesplastic deformation of surface irregularities
and elastic deformation of a spherically wavy base. The calculat-
ions of pressure distributions cover the range of parameters of
practical interest. Experimental contact resistance values have
been determined and are comparedwith theoretical predictions.
It was calculated that contact conductance for wavy surfaces can
be increased for certain ranges of parameters by making surfaces
rough.



- 3-

ACKNOWLEDGMENTS

This report was supported by the National Aeronautics and

SpaceAdministration under Grant No. NGR-22-O09-(477).



-4-

TABLE OF CONTENTS

Page

ABSTRACT ........................... 2

ACKNOWLEDGMENTS ....................... 3

TABLE OF CONTENTS ...................... 4

LIST OF FIGURES ....................... 6

NOMENCLATURE ......................... 7

I. INTRODUCTION ....................... i0

2. DESCRIPTION OF SURFACES ................. 14

3. INTERFACE PRESSURE DISTRIBUTION ............. 15

3.1 Governing Equations 15

3,2 Method of Solution 16

3.3 Pressure Distribution Curves 17

4. EXPERIMENTAL PROGRAM ................... 19

4.1 Preparation of Specimens 19

4.2 Description of the Apparatus 20

4.3 Experimental Procedure 22

5. EXPERIMENTAL RESULTS AND DISCUSSIONS ........... 23

6. CONCLUSIONS ....................... 24

BIBLIOGRAPHY ......................... 25

APPENDIX A - DERIVATION OF CONTACT RESISTANCE EQUATION .... 27

APPENDIX B - COMPUTER PROGRAMS ................ 30

List of Fortran Variables Used in Programs 30

Program to Determine Dimensionless Pressure

Distributions Between Rough and Wavy Surfaces 32

Program to Determine Contact Resistance Using Equation (5) 40



-5-

Page

APPENDIX C - TABLES OF COORDINATES FOR PRESSURE DISTRIBUTIONS . 46

71
TABLE I - EXPERIMENTAL DATA .................

TABLE II - EXPERIMENTAL DATA ................. 72

73
FIGURES ...........................



-6-

LIST OF FIGURES

Fig. i

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7 - 16

Fig. 17 - 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Definition of Contact Resistance

Surface Contacts

Surface Waviness

Surface Geometry

Typical Contact Area

Plasticity Index vs. Dimensionless Force: Region

of Significance for Roughness

Dimensionless Pressure Distribution Curves

Comparison of Hertzlan and Rough-Sphere Pressure

Distributions

Radius Ratios: Smooth vs. Rough Spheres

Surface-Profile Measuring Device

Contact Resistance Apparatus

Contact Conductance Results

Non-Uniform Heat Transfer Coefficient

Non-Uniform Heat Transfer Coefficient



-7-

aH

aH

a
w

A

A
app

A
c

A

b

C.L.A.

C
n

E 1 , E 2

u

E

F

F

f(l)

H

h

h
av

J
n

k

P

P
av

NOMENCLATURE

Hertzian radius

Dimensionless Hertzian radius, aH/(Rio)i/2

Contour radius

Area

Apparent contact area

Contour area

A/RiO

Radius of heat channel

Centerline average

Constant inside a sun.nation

Moduli of elasticity of specimens in contact

2 2

(i - _l l - _2)-i

_E 1 _E 2

Force

F/HOR i

hlhav

Microhardness of the softer of two materials in contact

Wave amplitude; Heat transfer coefficient

Average heat transfer coefficient

Bessel function of order n

Thermal conductivity--if two materials are in contact,

k = 2klk2/(k I + k 2)

Pressure

Average pressure



-8-

Pa

PH

PL

P

P1

q

q/A, Q/A

R

R
C

R i

RI _R 2

N.c
r

r

r 1

r
o

T
C

T
0

T
S

w(r)

Y

B

Y

!

Yi

Average pressure over contour area

Hertzian pressure

Local pressure over Hertzlan area

P/a

Plasticity index _ (_/H) (O/Ri)i/2

Heat

Heat flux over surface A

Thermal resistance; Radius of curvature

Constriction resistance

RIR2/(R I + R 2)

Radii of curvature of undeformed, spherically wavy surfaces

Macroscopic resistance term

Radial coordinate parallel to contact interface plane

rl(Rio)ll2

A quarter-wavelength

Radius where pressure becomes zero

Local surface temperature

Ambient temperature
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z Vertical distance coordinate

Greek Letter Sxmbols

X r/b

n Roots of Jl(Vn) ffi0

Vl,V 2 Poisson's ratio of specimens in contact

0 Distance between any point r and any elemental area

dA on the interfacial area

(p)/(Rio) I/2

Root mean square deviation of roughness heights--

O = (O_ + O_) 0"5 when two surfaces are in contact

profile slopes--Tane - (Tan_e + Tan_e) 0"5
Mean absolute value of

if two surfaces are in contact. More specifically,

Tan0 i E ElM I[e I 'I ---- dx- i - i 2
L ÷ _ L o Yl ' ' ' " " "

Contact resistance factor

0

O

Tan0

_w
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i. INTRODUCTION

Thermal resistances discussed in this work are assumed to occur in

a vacuum environment, or in an environment where an interstitial fluid

has a very low thermal conductivity. Thermal contact resistance is

defined by

AT

R  q-Tf (1)

where (q/A) is the heat flux based on the apparent area, and AT is

defined in Figure i. Consider two pieces of smooth metal that are

pressed together. As seen in Figure ZA, there is a finite number of

contact points, A . The total actual contact area is often much smaller
c

than the apparent area, A . Resistance to heat flow across such a
app

Joint is called contact resistance due to nmcroscoplc constriction.

The term "constriction" is used because heat-flow lines must squeeze

together to pass through the contact area (see Figure 2B). Of course,

the constriction would be present only in a vacuum, or where the inter-

stitial fluid has a lower conductivity than the base material. If the

surfaces are rough (Figure 2C), the true contact area will be even smaller

than A . For this reason, A will from now on be referred to as a "con-
C c

tour area" rather than a "contact area." The additional area reduction

due to roughness causes "microscopic constriction" of the heat-flow lines.

If A = A only microscopic constriction is present, and the pres-
c app'

sure distribution over the contour area is uniform. When both macroscopic

and microscopic constriction are present, the pressure distribution is non-

uniform, because of the clustering of contour areas at discreet locations.
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Holm [6], Kragelski [7], Clausing [1], and Greenwood [3] developed

equations for contact resistance under these conditions. They superim-

posed a microscopic constriction relation over another equation that

applies to the macroscopic case. These relations, however, require a

detailed knowledge of the contour area. Consider heat flow between two

cylindrical solids whose channel radii are greater than the radius of

their contour area (as in Figure 2B). In addltlon D let the surfaces

originally be spherically wavy. There are three ways that one can model

the heat transfer across the interface:

i. Assume constant temperature across the contour area;

2. Assume constant flux across the contour area; or

3. Assume that the heat flux through any point on the contour area is

proportional to the microscopic conductance, which is in turn a

function of the local pressure between the two surfaces.

In the first case, the maximum heat flux occurs at the outer rim

of the contour area. For this reason, heat-flow lines that are outside

the contour radius as Z ÷ _ must change their direction a minimal amount.

The third case t however, places the maximum heat flux at the center of

the contour areap making it necessary for the outer heat-flow lines to

change direction substantially more. In the second case above, heat-flow

is distributed in some intermediate fashion.

Resistance to heat flow is highest when the heat-flow lines must

redistribute themselves to the greatest extent. For this reason, a con-

tact resistance formula employing assumption (3) will be an upper bound

for the actual contact resistance. Case (1) will consequently be a lower

bound i and case (2) will fall somewhere in the middle.
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A simple formula, e.g., Reference [2], predicts the macroscopic

constriction resistance from the radius of the contour area:

iw _b2

RMAC = 2k a (2)
w

where aw is the contour radius, b is the channel radius, and k is the

thermal conductivity, _w' the contact resistance factor, is given by

awl.5

¢ = (I -_--)

where constant temperature is assumed and by

__ aw)l.5
¢ . 32 (I -_-

3_ 2

for the case of constant flux, A similar resistance equation includes

the effect of microscopic constriction resistance [9]:

b 2 1 _wWb2

R = 2 h + 2k_ (3)
a c w
w

where

P 0.985

h - 1.45 (_) k Tan0c c " (4)

Tan0 is the mean absolute value of the profile slopes, and o is the

root-mean square deviation of roughness heights. P is the average
a

2

pressure over the contour area, wa w .

We now have equations for models (i) and (2), assuming constant tem-

perature or constant heat-flux across the contour area. Miklc [8] has

developed an equation that falls into the third category, where contact

resistance is a function of the contour area pressure distribution, P(r):
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o 1 p 0.985
R = 0.345 _nBk [fo )'(H)

co [ fol_. (p/Pav)0"9858b
+_-- r.

n,,l Vn J2o(Vn)

Jo (Vnl) dl ]
(5)

b, o, and Tan0 have been defined above. Hardness and thermal conductivity

are denoted by H and k, respectively, and I is the dimensionless radial

coordinate X E r/b. J is the Bessel function of order n, and _ are
n n

the roots of

Jl(Vn) = 0 .

P is the average pressure over the apparent area. A summary of the
av

derivation of this equation appears in Appendix A. Knowledge of the interra-

cial pressure distribution is required for this equation. The Hertzian

pressure distribution for a smooth sphere pressed against a rigid flat

plane cannot, in general, be used as an approximation. Greenwood [4]

has shown that in many instances the pressure distribution under a rough

sphere is substantially different from the Hertzian approximation.

This work evaluates numerically the required pressure distribution

curves for rough, wavy surfaces in contact. The curves are compiled in

terms of convenient dimensionless parameters. In addition, experimental

values of contact resistance are presented and compared with theoretical

results,

The model used in this work assumes that microscopic surface irregulari-

ties are random and normally distributed, and their deformation is plastic.

Deformation of the spherically wavy base surface is elastic.
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2. DESCRIPTION OF SURFACES

The surfaces considered in this investigation are both wavy and

rough. A surface is wavy if its profile has a finite radius of curva-

ture along some finite length (see Figure 3). Roughness appears as a

zig-zag pattern of surface heights superimposed over the waviness. The

surfaces considered are assumed to have a Gausslan distribution of

heights. It has been shown in Reference [2] that for the purpose of

determining contact resistance, the parameters o, Tan%, and R provide

a sufficient description of the surfaces involved, o is the root-mean-

square deviation of roughness heights, and Tane is the absolute slope

of these irregularities. In a wavy surface, R is the radius of curva-

ture of a half-wave. A convenient way of finding R is by charting the

surface profile and using the following equation (refer to Figure 3):

(¼ wavelength) 2 r_ h

R - 2 (wave amplitude) "_ ' (for _ << i) . (6)

A description of surface-profile measuring devices is given later on in

this paper.
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3. INTERFACE PRESSURE DISTRIBUTION

3.1 Governing Equations

The following equations determine the pressure distribution between

two rough and wavy surfaces in contact under a load F:

H
P ,, _ ERFC ( Y ) (7)

r2(Rl + R2) 2w f p dr + 1 ff P dA (8)Y(r) = Y(0) + ....
2 RIR 2 _- E" A 0

F-ffPdA .

A

Non-dimensional versions of these equations are:

(9)

described in Section 3.2.

1 ERFC (Y__) (7a)
_'T

-- -- 1 --2 2_ -- -- 1 P (8a)
Y(F) - Y(O) + _ r - _-_ / P dr + _-_ f_/ -- d_

A 0

- ff F dA . (9a)

The variables in these equations are defined in the Nomenclature and

Figures 4A, 4B, and 5.

Equations (7) and (7A) come from surface-height distribution theory

and the assumption of plastic deformation of surface asperities [2].

Equations (8) and (8A) result from geometry and an assumed elastic deforma-

tion [11] as seen in Figure 4A. The final equation is a simple force

balance which must be satisfied. The solution of these equations is
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The non-dimensional version of these equations results in (dlmen-

sionless) pressure vs. (dimensionless) radius curves that are functions

of only two parameters, P1 and F. For practical purposes, the most use-

ful plasticity index values range from 0.0 to 0.6. These values corres-

pond to metals such as copper, aluminum, and stainless steel, with root-

mean-square roughnesses from 20 micro-inches to 200 micro-inches, and

whose wavy surfaces have radii of curvature between 25 inches to infinity.

3.2 Method of Solution

This section describes the technique used to find a pressure distribu-

tion employed by the contact resistance equation (Equation (5)). A pres-

sure distribution is determined by an iteratlve procedure that refines a

rough approximation until all three of the governing equations (7), (8),

and (9) are slmultaneously satisfied.

The Hertz solution for a smooth sphere pressed against a rigid flat

wall [11] is taken as a first approximation for Y(r). This Y(r) is sub-

stituted into Equation (7) whose pressure is in turn placed in Equation

(8) along with an arbitrary constant value of Y(0). The new Y(r) found

from Equation (8) is then placed in Equation (7) and checked by (9) to

determine if its load matches the actual load. At this point, Y(O) is

repeatedly modified until the pressures in (9) yleld a force that is within

i0 per cent of the correct load.

In some cases the calculated load will be lower than the actual load

even when Y(0) - 0. Thus it would be impossible to reach the correct load

by merely modifying Y(O). When this condition exists, Y(O) is immediately

called zero, and the resultant pressures are sent directly to Equation (8).
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Here the shape of the pressure distribution is changed until the correct

load can be obtained. When the iteration process passes through Equations

(7) and (8) twice in a row yielding approximately the same pressures

(within 1 per cent), the computation is complete, and the desired pres-

sure distribution is printed.

Computations were made using an I.B.M. 360. For the cases presented

in this work, twenty-four radial increments have been used in the finite

difference approximations. To be sure that twenty-four increments were

sufficient, a test case was run at forty-elght increments also. Compari-

son of the two resulting pressure curves shows a maximum discrepancy of

5 per cent and an average discrepancy of less than 1 per cent. Based on

the above, it was concluded that twenty-four increments yield sufficient

accuracy.

In the calculation procedure, symmetry was imposed on the bulk elas-

tic deflection by setting w(0) - w(Ar) where w(O) is the deflection at the

center and w(Ar) is the deflection at the first radlal point. In this

way, the slope of the deflection curve at the center llne will be zero.

3.3 Pressure Distribution Curves

The Hertzlan pressure distribution between two spherically wavy sur-

faces is given by

m

p I.SF
--2

aH

(l- °'5 (I0)

where F is the dlmenslonless applied load, and aH is the dlmenslonless

Hertzlan radius, aH E 1.333 (_/P1) I/3.

When a surface is rough, the pressure distribution may or may not

differ significantly from the Hertzlan solution. The region of PI vs. F
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plane where roughness is significant has been determined in this work

and is presented in Figure 6. Roughness causes pressure distributions

to differ slgnlflcantly from Hertzlan predictions in the following

reglons_

< 12.8 (PI) 1'25 0 < P1 < i0 (ii)

< 11.7 (P1) - 0.25, .10 < P1 < .60 . (12)

Even outside of these regions, edge effects will cause the contour

radius to be greater than the Hertzlan radius.

Dimensionless pressure curves for the region defined above appear

in Figures 7-16. Coordinates for these and other pressure curves are

listed in Appendix C. Pressure curves close to the transition llne in

Figure 6 closely resemble Hertzlan shapes, whereas far below this llne,

curves are much flatter. Figures 17-19 illustrate this by depicting

pressure curves at extreme values of F along with the associated Hertzlan

pressures. In each of these pictures, the curve with the higher maximum

is the Hertzlan pressure (pH).

Let r be defined as the radial position where the pressure drops
O

to zero. r is therefore the contour radius and is available from the
O

enclosed pressure distribution solutions. The ratio of r° over the

Hertzlan radius (aH) becomes less as the applied load is increased.

ro/a H is plotted as a function of P1 and _ in Figure 20. ro/a H approaches

a constant value greater than one as F values leave the region described

by Equations (Ii) and (12). Outside this region, r° should probably be

used instead of aH as the contour radius in Equations (2) and (3), whereas

the Hertzlan pressure distribution is in this case acceptable for Equa-

tion (5).
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The ro/a H curves in Figure 20 are obtained from values of r °

which are read directly from Figures 8-16. There is some subjec-

tive interpretation as to where the pressure actually reaches zero.

The behavior of the PI - .i curve should be accepted with caution

because (as seen in Figure 8) only three r values were used to
o

construct that curve.
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4. EXPERIMENTAL PROGRAM

4.1 Preparation of Specimens

Experiments are performed with solid circular cylinders 1-1/2

inches long and I inch in diameter. The specimens are cut from stain-

less steel 303 bar-stock. Four holes (size 55 drill) are drilled to

the centerline of each specimen so that thermocouples can be inserted

for measurement of the axial temperature drop. The first hole is 1/4

inch from the interface, and the rest of the holes are 3/8 inch apart.

The contact resistance interface surfaces are lapped nominally flat.

Waviness is created by the following method: A specimen is rotated in

a lathe while a hard rubber block is used to press an abrasive (emery

paper or diamond paste) against the test surface. The velocity distribu-

tion of the abrasive relative to the interface surface causes wear to be

an increasing function of radius. In this way, the longer the abrasive

is held in contact, the more convex the specimen becomes.

After the degree of waviness has been measured by a surface profilome-

ter, the surface is blasted with glass beads to provide a desired roughness.

Waviness measurements are taken using a device specially built to

accommodate the 1-1nch diameter, l-1/2-inch long specimens used in contact

resistance experiments (see Figure 21). This device consists of a speci-

men holder that slides slowly beneath a diamond stylus that is connected

to the core of a linear variable differential transformer. As the speci-

men passes underneath the stylus, the stylus moves up and down to follow

the specimen surface. The profile shape is traced out on a Sanborn 150

recorder, This profilometer is capable of magnifying the vertical
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deflection by a factor of five hundred. A detailed description of this

device may be found in Reference [5].

Roughness is measured on a Taylor-Hobson Talysurf IV. The "Talysurf"

provides a profile chart and a direct reading of the centerline average

(C.L,A,). The root-mean-square roughness (o) can be determined by the

following relation:

o - [C,L,A.] (_12)
0.5

-_ 1.25 [C.L.A.] (13)

The absolute value of the slope, Tan0 can be computed graphically from

the profile chart.

4.2 Description of the Apparatus

Contact resistance data have been obtained from the apparatus in

Figure 22. In a few words, the apparatus passes heat through two speci-

The three main sections of the apparatusmens in a vacuum environment.

are:

i. a vacuum chamber;

2. a refrigeration unit; and

3. a lever arrangement for applying an adjustable force to the

test interface.

The vacuum system is basically a hollow aluminum cylinder which

has been fabricated from four main sections. An upper cylinder is welded

to a top plate. When the rig is in use, a removable lower cylinder with

a flange seals up against an "0" ring and a bottom plate. The bottom

plate is bolted to the supporting structure. The upper and lower cylinders

are bolted together at their interface where another "0" ring allows for

a vacuum seal. Connections with the vacuum pumps and the refrigeration

unit are made through the bottom plate. Thermocouple wires, power lines
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for the specimen heater, and a bellows for the loading mechanism enter

through the top plate.

The vacuum is created by a forepump (Cenco HYVAC 14 rotary mechani-

cal pump) and a 4-inch diameter diffusion pump (NRC model H4SP). A

three-way valve allows the forepump to bring the system pressure down

to 50 microns of mercury where activation of the diffusion pump will con-

tinue to lower the pressure to 15 microns of mercury.

The refrigeration unit, of course, supplies the low temperature

sink for the heat fluxes that are passed through the test specimens. The

unit is a 1-1/2 horsepower, Model 155 WFC, built by the Copeland Corpora-

tion. With its evaporator at 25 OF, it can receive up to 16,840 BTU/HR.

Freon 12 serves as the refrigerant fluid. The magnitude of the heat-flux

produced is crucial to contact resistance studies because with large loads

too low a heat-flux will produce a negligible AT across the test interface.

A series of levers, supported by a welded steel frame, permits the

application of force to the specimens at a ratio of i00 to i. This dead-

weight loading is transmitted into the vacuum system via a 15-convolution,

3-3/8-inch I.D. stainless steel bellows, manufactured by the Flexonics

Division of the Universal Oil Products Company. At atmospheric pressure,

the applied load can be adjusted between 0 and 20,000 pounds. When the

system is evacuated, the minimum load is 163 pounds, due to the atmosphere

pressing down on the 3-3/8-inch diameter bellows device.

In addition to the apparatus listed above, there is a water-flow

cooler between the bellows and the heater. This cooler prevents the

heater from raising the temperature of the rest of the chamber to a level
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that would destroy the vacuum seals. The heater is powered by a 220

volt d.c. power source. A more detailed description of this apparatus

may be found in Reference [12].

4.3 Experimental Procedure

Chromel-alumel thermocouples are covered with "Silver Goop" and

inserted into the specimens. ("Silver Goop," manufactured by the Crawford

Fitting Company, is a substance that provides a good thermal contact.)

The thermocouple wires are then sealed in position with "White Epoxy,"

a product of the Hysol Division of the Dexter Corporation.

With the specimens inside, the vacuum chamber is sealed. The mechani-

cal pump is switched on, and the system pressure is brought down to 50

microns of mercury. At this point the diffusion pump is activated to fur-

ther lower the pressure to 15 microns of mercury. The applied load is now

the minimum force of 163 pounds. After the water-flow cooler and the

refrigeration unit are turned on, the heater is powered up to pass a heat-

flux through the specimens.

Temperature readings are recorded from a thermocuple potentlometer

every thirty minutes. When two successive readings are the same, it is

assumed that steady state has been reached. The applied load is now

increased, and the temperature-recording procedure is repeated. The

applied load is always increased rather than decreased because the speci-

mens may undergo a plastic (irreversible) deformation.
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5. EXPERIMENTAL RESULTS AND DISCUSSION

The results of contact resistance experiments appear in Tables I

and II and are plotted in Figures 23A and 23B. Also appearing are the

predictions using Equation (2) for contact resistance with wavy surfaces,

Equation (3) which includes the effects of both roughness and waviness,

and Equation (5), an integral formula which assumes that the local

interfacial flux is proportional to the local microscopic conductance

and hence is a function of the local interracial pressure. Equation (5)

was solved on an I.B.M. 360 computer, using forty-four and eighty-nine

radial increments (for the two different cases involved in the experiments)

in a finite difference approximation of the integrals. The summation

appearing in the macroscopic resistance term was evaluated using the first

six terms of the series. The computer program for this equation appears

in Appendix A. Equations (2) and (3) are given for the case of constant

flux over the contour area, using two separate choices for the contou_

a. a = aH, the Hertzlan (smooth surface) approximation; andw

b. aw = ro, the rough-surface contour radius determined from

the pressure curves in Figures 7-16.

It has been stated earlier that Equation (5) is an upper bound for

resistance (a lower bound for conductance). This indeed appears to be

the case, as Equation (5) is the lowest curve in both Figures 23A and 23B.

Using aw = aH, Equation (3) is very close to Equation (5). For the

particular parameters involved in the experiments (for which the macro-

scopic conductance was the dominant factor), Equation (3) with aw = r°

radius, a .
W
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gives the best prediction for the actual contact conductance (to within

25 per cent accuracy).

It is important to notice that in certain ranges of parameters, a

wavy surface will yield a higher h if it is roughened. This is caused,

as it is shown in this work, by an increase in the contour area. (The

engagement of the two surfaces covers a larger area when roughness is

present as in Figure 4B.) Experimentally, this was also observed by

Clausing [1]. He, howeverp did not explain the phenomena.

Experiments performed in this work dealt with surfaces that were

both rough and wavy. There was no need to experiment with rough, flat

surfaces, because this topic has already been covered sufficiently, both

experimentally and theoretically, in Reference [2], for example. Similarly,

the case of smooth, wavy surfaces has been covered amply by authors such

as Clausing [i],
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6. CONCLUSIONS

From pressure distribution curves given in Figures 7-16, one can

determine the actual contour area between two rough and wavy surfaces.

In a certain range of parameters, this contour area is substantially

larger than the value calculated from the Hertzlan theory. Experi-

ments were performed in this range, and three basic approaches for the

calculation of contact conductance were applied to the results, includ-

ing formulas based on

a. the Hertzian contour area;

b. the contour area predicted by this work; and

c. an integral relation which uses the complete interfacial

pressure distribution.

It is suggested that Equation (3) (which assumes constant flux over the

the contour area) using contour radii predicted in this work is the best

prediction for the cases involved in the experiments (in which the pre-

dominant resistance comes from macroscopic constriction). For those cases

where microscopic resistance is primarily controlling the value of con-

tact resistance, it is believed that the integral relation (Equation (5))

would yield the correct prediction. (For the case of a uniform pressure

distribution between two flat, rough surfaces, Equatic_ (5) reduces to one

term, the microscopic constriction resistance.)

The main conclusion is that contact conductance can be increased for

certain ranges of parameters by making surfaces rough. This thesis also

identifies the range of parameters where roughness will substantially affect

the interfaclal pressure distribution between rough and wavy surfaces.
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APPENDIXA

DERIVATIONOFCONTACTRESISTANCEEQUATION

The equation developed by Mikic [8] for contact resistance (Equa-

tion 5) was derived as follows:

Figure 24A depicts a solid circular cylinder with a non-uniform

heat transfer coefficient, h, on the z = 0 face. The sides are insu-

lated, and heat-flow is assumed to be one-dimensional as z ÷ _. The

flow of heat at the top surface is

Q - f h (T - T ) dA (AI)
o C

A

where T and T are defined in Figure 24A.
o c

surface is therefore

The heat-flux over that

Q/AcT h -ifT

o av A A c

hdA (A2)

where
t

i f hdA
hay = _ A

The total resistance from the surface to the ambient is

T - T

R - o s (A3)
Q/A

where T is defined in Figure 24B.
S

To transform (A2) into the form of (A3), the term

ifhTdA

A A s

can be subtracted from and added to the second and third terms of (A2),

respectively to yield:
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i _ (T c T s) hdAQ/A = (T o - Ts) hay - _ - .

Thus we now have:

(A4)

R - l+_hav 1 A/ hh(Tcav - T ) dA.s (A5)

The second term on the right-hand side of (A5) is the constriction

resistance:

Rc =!Q /_-- (Zc- Zs) dA . (AS.A)
av

This represents the difference in total resistance between the two cases

pictured in Figure 25A.

Figure 25B illustrates the basic model for which Equation (5) was

developed. At z - O, h is a function of radius, and the sides are Insu-

lT
lated. Also, _- constant as z ÷ m.

The governing differential equation for the situation is

V 2 T = 0

where V2 is the Laplacian operator.

the steady-state solution is

where v
n

(A6)

For the given boundary conditions,

m -U z/b

Ts . Tc __ + Cn n
k_b2 z n_l e

are the roots of

Jl(Vn) = 0 .

Using relation (A8) and the approximation

Jo(Vn r/b) (A7)

_T

[-k(_)z=0]at r h(r)

Q/A _
av

(A8)

• (A9)
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Equation (A7) becomes

T - T = 2Q y o o Jo(Vn _) (AI0)

c s wbk n=l Vn J2(Vn)

where A E r/b and f(A) _ h/hay. Combining (A5.A) and (AI0) will yield

b oo [fo1 Xf(A) Jo(Vn _) dX] 2

Rc = 4 _ E j2 " (All)
n=l _ (_n)n o

Contact conductance for purely rough surfaces with Gaussian surface

height distributions has been shown in Reference [2] to be

P 0.985

hc = 1.45 k oTan8 (_) (AI2)

where the variables have been defined in the nomenclature. By combining

(All) and (AI2), Equation (AS) becomes Equation 5:

0.985

o °R = 0.345 k Tan0 If I ( ) dl] -I

8b _ [fo1 l(P/Pav )0"985 J (Vn%) d%]

+_- r o
n-i _)n Jo2 (_)n)

(5)
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APPENDIX B

COMPUTER PROGRAMS

List of Fortran Variables Used in Prorf_.a_1_

Notation of This Thesis

b

F

H

Jo (x)

k

p, orP

p, or P

P1

R

R i

RI_R 2

r

r,dr

Y(r)

y(0)

A,dA

_n where Jl(_n) - 0

Fortran Symbol

AH

AHB

B

PLOAD, FBAR

H

BESEL(X)

AK

PRES,PRSS,PREZ,

HRTZP (Hertzian)

PRESH (Due to Hertzian Y)

PBAR, PBAZ

PL

RES

RADI,RAD

R1, R2

R,RE,RHOM (radial position

of dA)

RB, DRB

YB(I)

YNB

ALAM, DL

AN0 (J)
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PP

Tan8

Tanl0, Tan20

_1,02
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Fortran

S

TAN

TANI, TAN2

SIGMA

SIGMI, SIGM2
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PROGRAM TO DETERMINE DIMENSIONLESS PRESSURE

DISTRIBUTIONS BE_qEEN ROUGH AND WAVY SURFACES

INPUT DATA

a. MAX = Number of radial increments

b. P£, F

c. YNB = first approximation for Y (0)

OUTPUT DATA

E

a. P£, F

b. Dimensionless Hertzlan pressures

c. Dimensionless Hertzlan radius

d. First approximation for Y(r)

e. First approximation for P(r)

f. Second approximation for P(_)

g. If any values of Y(r-_ are negative, they are

written here.

h. Final values, P(r)

i. Final values, Y(r)

J. F calculated from P(r)

k. Dimenslonless radlal coordinates

1. P£, F

LINE NO.

31

33

38

41

57

68

69

78

96

151

229

230

232

235

239



-33-

L_ L_ ¢} U L2 L2
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PROGRAM TO DETERMINE CONTACT RESISTANCE

USING EQUATION (5)

INPUT DATA

a. H, O1, o2, TanlO , Tan20

b. k (thermal conductivity)

c. RI, R2, MAX - Number of pressures to be read

in, N = number of roots of Jl(Vn) - 0 to be read in

Dimensionless pressures

Roots of Jl(_n) - O

Dimensionless radial increment

do

e°

f.

g. Average pressure _ F/Aap p

OUTPUT DATA

a. INPUT DATA

b. Microscopic resistance term

c. Macroscopic resistance term

d. Total contact resistance

LINE NO.

34

35

36

37

38

39

40

93-100

102

104

106

NOTE: The number appearing in the inequality in card 107 should be

one less than the number of sets of input data.
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APPENDIX C

TABLES OF COORDINATES FOR PRESSURE DISTRIBUTIONS

P1..002

F = .005

0.000 .00066

0.302 .00066

0.603 .00061

0.905 .00054

1.206 .00046

1.508 .00034

1.809 .00019

2.111 .00007

2.412 .00000
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D

F-

%-

0. 000

0.239

0.478

O. 718

0.957

1.197

1.436

1.675

1.915

2.154

2. 393

. OO5

P1 -

P

•00097

•00097

.00089

.00081

•00068

•00052

•00034

•00016

.00005

.00001

.00000

•004

m

%-

0.000

0.302

0.603

0.905

1.206

1.508

1.809

2.111

2.412

2.714

m m

F
•010

P

.00132

.00132

.00121

.00109

.00092

•00069

.00040

.00014

•00002

.00000
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r

0.000

0.263

0.527

O. 790

1. 054

1. 317

1. 580

1. 844

2. 107

2.371

I

F- .010

P1

P

.00164

.00164

.00152

.00136

.00115

.00087

.00054

.00024

.00006

.00000

•,, .006

¥

0.000

0.302

0.603

0.905

1.206

1.508

1.809

2.111

2.412

2.714

F- •015

P

.00199

.00199

.00183

.00165

.00139

.00103

.00062

.00023

•00004

.00000
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¥

0.000

0.279

0.559

O. 839

1.120

i. 400

1.679

1.959

2.239

2. 519

P1 -

F -

.01

.02

m

P

.00293

.00293

.00270

.00243

.00204

.00153

.00093

.00039

.00009

.00000



F=

r

0.000

0.279

0.559

0.839

1.120

1,400

1,679

1,959

2.239

2.519

2.799

n

r

0.000

0,353

0.7O5

1,058

1.411

1.763

2,116

2.469

2.821

.040

P

.00590

.00590

.00545

.00492

.OO416

.O0316

.00199

.00089

.00023

.00003

.00000
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P1 - .02

r

0,000

0.320

0.641

0.961

1.282

1.602

1.922

2,243

2.563

2,884

F = .080

l

F= .060

P

.00685

.OO685

.00631

.00568

.00476

.0O35O

.00198

.00068

.00010

.00000

P

.00765

.00765

.00701

.00629

.00528

.00384

.00203

.00054

.0OOO5
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r

0.000

0.320

O.641

0.961

i.282

i.602

1.922

2.243

2.563

2.884

3.204

.13

P

.01412

.01412

.01305

.01182

.01004

.00763

.00469

.00189

.00036

.00002

.00000

P1 = .O4

m

r

0.000

0.353

0.705

1.058

1.411

1.763

2.116

2.469

2.821

3.174

m

F- .16

P

.01556

.01556

.01433

.01294

.01090

.00807

.00458

.00145

.00016

.00000
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r

O.000

O.353

O.705

i.058

1.411

1.763

2.116

2.469

2. 821

3.174

3.527

P1 =

F -

m

P

.01861

.01861

.01708

.01530

.01273

.00916

.00487

.00140

.00014

.00000

.00000



-53-

m

F - .25

m

r

0.000

0.302

0.603

0.905

1.206

1.508

1.809

2.111

2.412

2.714

3.015

]:

0.000

0.415

0.829

1.244

1.658

2.073

2.488

2.902

3.317

3.731

P1 -

P

.03056

.03056

.02825

.02540

.02138

.01609

.00992

.00429

.00104

.00011

.00000

F= .6

.I

r

O. 000

O. 367

O. 734

1. i00

1.467

i. 834

2.201

2.567

2. 934

3. 301

3.668

I

F- .5

P

.04O72

.04072

.03758

.03397

.02878

.02169

.01282

.OO439

.00053

.00002

.00000

P

.04503

.04503

.04122

.03693

.03079

.02210

.01103

.00232

.00009

.00000
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r

0. 000

0.222

0.444

0.667

0. 889

1.111

1.333

1.555

1.777

1.999

2.222

2. 444

2. 666

m

E

0.000

0.320

O. 641

0.961

1.282

I. 602

1.922

2.243

2.563

2. 884

3. 204

F-

m

F-

.2

.6

P

.03741

.03741

.03543

.03010

.02685

.02071

.01446

.00859

.00409

.00145

.00036

.00006

.00000

m

P

.06558

.06558

.06071

.05472

.04625

.03506

.02189

.00954

.00223

.00021

.00000

PI - .20

E

0.000

0.280

0.560

0.840

1.120

1.400

1.679

1.959

2.239

2.519

2.799

3.079

m

E

0.000

0.353

0.705

1.058

1.411

1.763

2.116

2.469

2.821

3.174

3.527

m

F-

m

.4

.8

P

.05564

.05564

.05174

.04685

.04008

.03131

.02105

.01096

.00378

.00073

,00007

.00000

m

P

.07312

.07312

.06748

.06068

.05091

.03767

.02191

.00788

.00119

.00005

.00000
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P1 = .20

m

r

0.000

0.379

0.759

i.114

i.520

1.899

2.279

2.659

3.039

3. 419

3.799

B

0. 000

0.425

0. 850

1.275

i. 700

2.125

2.550

2.975

3.400

3.825

m

F,,I

i

F ,, 1.4

m

P

.08200

.08200

.07567

.06825

.05759

.04296

.02486

.00818

.00090

.00002

.00000

I

P

.09551

.09551

.08810

.08002

.06825

.05113

.02863

.00791

.00049

.00000

r

0.000

0.404

0.807

1.211

1.615

2.018

2.422

2.826

3.229

3.633

4.037

r

0.000

0,444

0.889

1.333

1.777

2.222

2.666

3.110

3.554

3.999

F=I.3

m

F= 1.6

P

.09035

.09035

.08344

.07551

.06403

.04827

.02826

.00897

.00079

.00001

.00000

.09919

.09919

.09136

.08232

.06892

.05033

.O2679

.00611

.00023

.00000



r

0.000

0.462

0.924

1. 386

1.848

2.310

2.773

3. 235

3. 697

4.159
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P1., .20

F =1.7

m

P

.10280

.10280

.09467

.08538

.07131

.05126

.02578

.00489

.00011

.00000
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E

0. 000

0.194

0. 388

0.582

0.776

0.970

I. 164

1.359

1.553

1.747

1.941

m

E

0.000

0. 280

0.559

0.837

1.120

I. 4O0

1.679

1.959

2. 239

2.519

2.799

3.079

D

F-

m

F=

.2

.6

P1 =

P

.04341

.04341

.04109

.03840

.03203

.02575

.01922

.01283

.00742

.00357

.00137

m

P

.07933

.07933

.07374

.06653

.05658

.04384

.02921

.01511

.00525

.001O3

.00099

.00000

.3O

r

0. 000

0.245

0. 489

0. 734

0.978

1.223

1.467

1.712

i .956

2. 201

2.445

2. 690

2.934

m

E

0. 000

0. 308

0. 616

0.924

1.232

i. 540

1.848

2.157

2.465

2.773

3.081

3.389

m

F-

m

F-

.4

.8

P

.06279

.06279

.05844

.05259

.04461

.03477

.02403

.01364

.00588

.00174

.00032

.00003

.00000

P

.10440

.10440

.10020

.08434

.06819

.05281

.03449

.01671

.00484

.00066

.00003

.00000
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¥

O. 000

0.353

O. 705

1.058

1.411

1.763

2. 116

2. 469

2.821

3.174

3.527

w

r

O. 000

O. 418

0.836

i. 254

1.672

2. 091

2. 509

2.927

3. 345

3.736

F-I.2

P1 -

m

P

.1104O

.11040

.10230

.09235

.07819

.05913

.03619

.01456

.00268

.OO015

.00000

m

P

.13300

.13300

.12230

.II000

.09227

.06731

.03580

.00912

.00054

.00000

.3O

]:

0.000

0.379

0.759

1.140

1.520

1.899

2.279

2.659

3.039

3.419

3.799

]:

0.000

0.450

0.901

1.351

1.802

2.252

2.702

3.153

3.603

4.054

I

F_

Fs

1.5

2.6

m

P

.1194O

.1194O

.11030

.09936

.08357

.O6189

.03556

.01198

.00144

.00004

.00000

P

.15240

.15240

.14070

.12800

.10950

.08245

.04636

.01238

.00060

.00000



b

F-3.1

E

0. 000

0.479

0.957

1.436

1.914

2.393

2.872

3. 350

3.829

4. 307

-59-

P1 - .30

m

P

.19610

.19610

.18000

.15500

.12160

.08924

.04903

.01158

.00035

.00000

B

E

O. 000

0.499

0.998

1.497

1.996

2.495

2.994

3.493

3.992

4.491

w

F- 3.4

.16930

.16930

.15550

.14050

.11900

.08791

.04557

.00824

.00012

.00000



m

F- .i

%"

0.000

0.140

0.279

0.419

0.559

0.699

0. 839

0.979

1.120

1.260

i.4OO

i.540

i.68O

1.820

1.959

2.099

2.239

2.379

-60-

P1 - .40

P

.02907

.02907

.02770

.02567

.02301

.01985

.01638

.01281

.00941

.00644

.00405

.00231

.00118

.00054

.00021

.00007

.00002

.00000

0.000

0.176

0.353

0.529

0.705

0.882

1.058

1.234

1.411

1.587

1.763

1.940

2.116

2.292

2.469

2.645

F- .2

m

P

.04654

.04654

.04411

.04010

.03503

.02884

.O2233

.01584

.01OO8

.00561

.00265

.00103

.00032

.00008

.00001

.00000



F- .3

r

O. 000

0.202

O. 404

0. 606

O. 807

1.009

i. 211

1.413

1.615

1. 817

2.019

2. 220

2.422

2.624

2. 826

-61-

PI - .40

P

.05887

.05887

.05519

.05004

.04320

.03497

.02603

.01720

.00972

.00450

.00162

.00044

.00008

.00001

.00000

m

r

0.000

0.222

0.444

0.667

0.889

1.111

1.333

1.555

1.777

1.999

2.222

2.444

2.666

2.888

m

F- .4

.07284

.07284

.06905

.04606

.05324

.04192

.03019

.01883

.00963

.00378

.00106

.00020

.00002

.00000
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u

r

O. 000

0.239

0.479

0.718

0.957

1.197

1.436

1.675

1.915

2. 154

2. 393

2. 633

2.872

l

r

O. 000

0.345

0.690

i.035

1.381

1.726

2.071

2. 416

2.761

3.106

3. 451

3.797

1

F,,

F,,

.5

1.6

P1 ,,

.07819

.07819

.07288

.06563

.05584

.04382

.03064

.01795

.00819

.00267

.00057

.00007

.00000

.16620

.16620

.15000

.13430

.10980

.08462

.05520

.02549

.00606

.00051

.00001

.00000

.4O

r

0.000

0.302

0.603

0.9O5

1.206

1.508

1.809

2.111

2.412

2.714

3.015

3.317

m

r

0.000

0.380

0.760

1.140

1.520

1.899

2.279

2.659

3.039

3.419

3.799

F-

F-

1.0

2.0

.14330

.14330

.136O0

.12600

.09847

.07404

.O4977

.02613

.00886

.00154

.00011

.00000

n

P

.16250

.16250

.15070

.13660

.11630

.08867

.05445

.02113

.00327

.00012

.00000
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F-

N

r

O. 000

0.409

O. 818

1,228

1.637

2. 046

2,455

2. 864

3,274

3,683

4.092

F-

r

0. 000

0.462

0.924

i. 386

i. 848

2. 310

2.773

3.235

3.697

4. 159

2.3

3.5

P1 -

P

.16910

.16910

.15580

.13980

.11670

.08486

.04595

.01283

.00097

.00001

.00000

P

.20270

.20270

.18720

.16970

.14390

.10610

.05679

.01355

.00051

.00000

.4O

m

r

0. 000

0.434

0.869

i. 305

1.739

2.174

2.609

3.044

3.479

3.914

r

0.000

0.487

0.973

1.459

1.946

2.432

2.919

3.405

3.892

4.378

F"

m

F- 4.0

m

P

.18660

.18660

.17200

.15490

.13030

.09618

.05282

.01389

.00077

.00000

m

P

.21280

.21280

.19570

.17680

.14950

.10930

.05533

.01040

.00020

.00000



m

F'O.I

r

0.000

0.130

O. 260

O. 390

O. 520

0.650

O. 780

O. 910

1.039

1.169

1.299

1.429

1.559

1.689

i. 819

1.949

2.079

2. 209

2.339
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P1 - .50

P

.03035

.03035

.02906

.02716

.02259

.02155

.01712

.01395

.01119

.00808

.00546

.00342

.00197

.O0103

.00049

,00020

.00008

.00002

.00000

r

0.000

0.164

0.327

0.491

0.654

0.819

0.982

1,146

1,310

1.473

1.637

1,801

1.964

2.128

2.292

2.455

2.619

D

F-0.2

n

P

.04989

.04989

.04730

.04357

.03869

.02909

.02375

.01934

.01312

.00802

.00432

°00201

.00079

.00025

.00007

.OOOO1

.00000



m

F-0.3

0.000

0.187

0.375

0.562

0.750

0.937

1.124

1.312

1.499

1.686

1.874

2.061

2.249

2.436

2.623

-65-

P1 - .50

P

.06450

.06450

.06118

.05880

.04869

.03417

.03037

.02100

.01288

.00677

.00294

.00102

.00027

.00005

.00000

D

r

0.000

0.206

0.413

0.619

0.825

1.031

1.237

1.444

1.650

1.856

2.062

2.269

2.475

2.681

2.887

B

F- 0.4

m

P

.07678

.07678

.07269

.06960

.05661

.04537

.03365

.02217

.01248

.00572

.00203

.00053

.00009

.00001

.00000



m

F-0.5

r

0.000

0.222

O. 444

0.666

0.889

1.111

1.333

1.555

1.777

1.999

2.222

2.444

2.666

2.888

-66--

P1 - .50

N

P

.08860

.08860

.08396

.07700

.06489

.05131

.03720

.02347

.01222

.00492

.00143

.00028

.00003

.00000

E

0.000

0.279

0.559

0.839

1.112

1.400

1.679

1.959

2.239

2.519

2.799

3.079

F-

m

P

.12320

.12320

.11450

.i0280

.08680

.06657

.04418

.02282

.00806

.00165

.00017

.00000
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PI " .50

0. 000

O. 320

0.641

0.961

1.282

i. 602

1.922

2. 243

2.563

2. 884

3. 204

3.524

u

F=I.6

m

F_ 3

r

0. 000

0. 404

0. 807

0.211

1.615

2.018

2.422

2.826

3.229

3.633

4.037

.16010

.16010

.14910

.13520

.11580

.09038

.05998

.02954

.00861

.00112

.00005

.00000

M

P

.21710

.21710

.20130

.18240

.15520

.11810

.07195

.02652

.00334

.00007

.00000

r

0.000

0.353

0.705

1.058

1.411

1.763

2.116

2.469

2.821

3.174

3.527

n

r

0.000

0.443

0.889

1.333

1.777

2.222

2.666

3.110

3.554

3.999

m

F- 2

m

F-4

.18160

.18160

.16870

.15280

.13030

.10030

.06408

.02833

.00624

.00045

.00000

P

.23810

.23810

.21990

.19850

.16740

.12400

.06894

.01859

.00101

.00000
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r

0.000

0.497

O.994

1.491

i.988

2.485

2.982

3.479

3.976

4.473

F- 5.3

PI-

P

.26970

.26970

.24820

.22350

.18800

.13720

.06998

.01309

.00023

.00000

.5O

r

0.000

0.485

0.969

1.455

1.940

2.425

2.909

3.394

3.879

4.364

F-5.5

.27400

.27400

.25380

.23050

.19600

.14760

.08466

.02249

.00083

.00000
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P1 -' .60

r

0. 000

0. 209

0.418

0.627

0.836

i. 045

1.254

1.463

1.673

1.882

2.091

2. 300

2.509

2.718

2.927

¥

0.000

0.302

0.603

0.905

i. 206

1.508

i. 809

2.111

2.412

2.714

3.015

3.317

F=

D

F --

.5

1.4

m

P

.09278

.09278

.08787

.O8OOO

.06858

.05507

.04093

.02701

.01521

.00694

.00244

.00062

.00011

.00001

.00000

P

.16470

.16470

.15310

.13790

.11660

.08929

.05843

.02877

.00900

.00144

.00009

.00000

r

0.000

0.263

0.526

0.790

1.054

1.317

1.580

1.844

2.107

2.371

2.634

2.897

3.161

r

0.000

0.332

0.664

0.996

1.327

1.659

1.991

2.323

2.655

2.987

3.319

3.650

m

F=

m

F =

.9

2.2

m

P

.13250

.13250

.12340

.11120

.09446

.07363

.05048

.02816

.01155

.00307

.00047

.00004

.00000

P

.24200

.24200

.23800

.20000

.16730

.12580

.08412

.04265

.01276

.00162

.00006

.00000

i
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r

O. 000

0.379

0.759

i. 140

1.520

i. 899

2.279

2.659

3. 039

3.419

3.799

r

O. 000

O. 450

O. 901

1.351

i. 802

2.252

2. 702

3.153

3. 603

4.054

F-

m

F-

P1-

P

.23870

.23870

.22160

.20090

.17150

.13200

.08380

.03514

.00631

.00028

.00000

P

.28120

.28120

.25950

.23340

.19570

.14280

.07633

.01889

.00087

.00000

.6O

R

r

0.000

0.418

0.836

1.254

1.672

2.091

2.509

2.927

3.345

3.763

4.181

r

0.000

0.479

0.957

1.436

1.914

2.393

2.872

3.350

3.829

4.307

F-

F-

4

m

P

.27230

.27230

.25280

.22970

.19650

.15090

.09325

.03470

.00414

.00007

.00000

b

P

.37270

.37270

.35000

.29740

.23730

.17740

.10300

.02892

.00129

.00000
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Specimen I.i

O 1 = 81 _"

RI = i0.4"

TanlO = .0512

TABLE I

EXPERIMENTAL DATA

Stainless Steel (303)

Specimen Pair No. 1

k = i0.0 BTU/HR.FT.°F

specimen i. 2

02 = 69 U"

R 2 = 8.4"

Tan28 = .0378

Combined Values

o = 106 _"

Ri = 4.65"

Tan0 = .0635

F(Applied Load in Lbs.)

165

265

365

765

1165

2165

3165

5165

7165

9765

h(BTU/HR.FT2°F)

i0.7

12.5

13.9

20.0

26.0

32.8

41.0

54.7

62.5

85.7



Specimen 2.1

a I - 69 B"

R 1 - 250"

Tanl8 - .068

-72-

TABLE II

EXPERIMENTAL DATA

SCalnless Steel (303)

Specimen Pair No. 2

k - I0.0 BTU/HR.FT°F

_2.__!

02 - 0 _"

R 2 = 156"

Tan2@ ,, 0

Combined Values

o" = 69 lJ"

R i = 96"

Tane ,, .068

F(Lbs.)

165

265

365

565

765

1165

h(BTU/HR.FT2°F)

49

71

88

i01

124

2O8
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FIGURES
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Q/A

0

0

0

0

0

0

/

_THERMOCOUPLES

Z

RCONTACT -=
A.T
Q/A

X/'tLCTUA"
EMPERATURE

PROFILE

,J_-_THERMOC OU PLE

/ READINGS
._T

FIG. I DEFINITION OF CONTACT RESISTANCE
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a)

Aapp

b)

'_HEAT TRANSFER

] PATHS

,_"_'C ON ST R1CTION"

_/_ OCCURS HERE

c)

FIG. 2 SURFACE CONTACTS
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r

FIG. :5 SURFACE WAVINESS
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_\ R H

W(O)

I

// _-Y(,_/

r z/2_

FIG. 40 SMOOTH SPHERE PRESSED

RIGID PLANE

AGAINST

RI

FIG. 4b TWO ROUGH SURFACES

TOGETHER

r

Y(r )

PRESSED
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j-v__ - 9 _A

POINT ) IS A POINT WHERE W(r) IS TO BE
COMPUTED

POINT (_ _ IS THE ORIGIN OF A CIRCULAR
" COORDINATE SYSTEM

/

/
I

J

FIG. 5 TYPICAL CONTACT AREA
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F

7

6

5

4

3

2

0
0

ROUGHNESS HAS NO
EFFECT, USE THE
HERTZIAN PRESSURE
DISTRIBUTION

F=II.TPL - 0,25 F OF

IMPORTANT'

THE ENCLO-

CHARTS FOR

I
I

I
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PL
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ENLARGEMENT OF
DOTTED AREA IN
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J t l I I
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FIG. 6 REGION WHERE ROUGHNESS

IS SIGNIFICANT
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P

.04

.O3

.O2

.01

0

' PL =0.10

_ =0.25
P.

i

0 I 2 3

(o)

:-F

.0 5_,. PL =0.10

.0 4_""__ = 0.6 0

0 i
0 I 2 3

(b)

.O5

.04

P
.03
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.01

0
0
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:0.20

.08

PH P .06
- .04

- _ .O2
i 1 =F 0
I 2 3

(c)

PL= 0.20
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1 I

0 I 2 3

(d)

=F

FIG. 17 COMPARISON OF

ROUGH - SPHERE

DISTRIBUTIONS

HERTZIAN

PRESSURE
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PL - O. 30 P4 r'L - 0.30

•08LF =0.20 .20_ 3.00

.06 5 IPH P" .I

lOfi

.04

.00 .05

0 0.5 1.0 1.5 20 0 I 2 3

(o) (b)

_..f
4

I. PL = 0.40 _ PL = 0.40
I

: oo
.06 -'0.10

.2 Of _ p

.04- .15

P PH _ .10 H

.o; •°jr, ,
0 0.5 1.0 1.5 2.0 0 I 2 5

(c) (d)

FIG. 18 COMPARISON OF HERTZIAN (PH)

AND ROUGH -.SPHERE PRESSURE

DISTRI BUTIONS

4



-92-

...,,A PL =0.50 - _ PL= 0.50

0.5 1.0 1.5 2.0 r 0 g

(a) (b)

.20

.15

.10

.0 5

0

__ PL = 0.60 .__6.00oo

(c) (d)

FI G. 19 COMPARISON OF HERTZIAN (PH)
AND ROUGH-SPHERE PRESSURE
DISTRIBUTIONS



-93-

I11 hi

2: "r

0 0

(/1
i,i
0

I1

(/)

-r-
(9
:D
0

>

-!-

0
0

:E
_0

N

0

(n
3

iv

0
OJ

m



-94-

I'-
Z
hi
=E
::)
13:
I--
U)
Z
mm

(.9
Z
m

IZ:

(0

hi
=E

hi
--I

m

h
0

O.

bJ
0

IE
::)
(0

m

m

U.



-95-

FIG. 2 2 CONTACT RESISTANCE APPARATUS
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